
On the magnetic moment of an electron gas in an inhomogeneous magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 3607

(http://iopscience.iop.org/0305-4470/15/11/039)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 3607-3615. Printed in Great Britain 

On the magnetic moment of an electron gas in an 
inhomogeneous magnetic field 

P Achuthan, S Benjamin and K Venkatesan 
Theoretical Physics Group, Department of Mathematics, Indian Institute of Technology, 
Madras-600036. India 

Received 4 February 1982, in final form 9 June 1982 

Abstract. The magnetic behaviour of a Dirac electron gas in the presence of the 
inhomugeneous magnetic field, H sech*(ay), is studied. Using the single-particle energy 
eigenvalue of a Dirac electron, the magnetic interaction energy density is written down, 
from which an explicit expression for the magnetic moment is derived. The magnetic 
moment density is evaluated numerically in the degeneracy limit for several values of the 
magnetic field strength and the chemical potential. The transition from para- to diamagnet- 
ism exhibited by the electron gas in the homogeneous magnetic field is found to persist 
in the inhomogeneous field also. Further, the distinct possibility of spontaneous magnetisa- 
tion (i.e. ferromagnetic behaviour) of the electron gas in this inhomogeneous field is 
discussed. 

1. Introduction 

The knowledge of the behaviour of an electron gas in a static homogeneous magnetic 
field (HMF) of strength of the order of lOI3G is of great importance in the study of 
certain gravitationally collapsed bodies like the neutron stars. Recently, the thermo- 
dynamic and magnetic behaviour of the electron gas in such large fields has been 
studied by Canuto and Chiu (1968a, b, c). These authors calculated the macroscopic 
magnetic moment of the gas which determines the magnetic property of the system. 
They found that the magnetic moment is positive for the first few levels and then 
switches over to a negative value, the switch over to diamagnetism being dependent 
on the field strength as well as the chemical potential. However, no spontaneous 
magnetisation takes place. The maximum magnetic moment is only about lo-’ times 
the strength of the inducing magnetic field. Thus the non-interacting electron gas in 
a HMF does not display ferromagnetic behaviour. Also the inclusion of the anomalous 
magnetic moment does not alter the above conclusions (Chiu et a1 1968). 

It is an indisputable fact that most of the fields in nature, both terrestrial and 
celestial, are inhomogeneous in character (Pikel’ner and Khokhlova 1973). The 
motion of charged particles in inhomogeneous magnetic fields (IMFS) is an increasingly 
important topic, e.g. in geophysics, solar physics and thermonuclear research (Jackson 
1975). In a previous paper (Achuthan et a1 1979) we considered the striking possibility 
of electron-positron pair creation in the IMFS. In view of this and other considerations, 
it is quite reasonable to expect that the study of the thermodynamic, quantum 
electrodynamic and weak interaction properties of the Dirac electron in IMFS could 
yield further interesting and possibly startling results. 
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In the present paper, we study the magnetic properties of the Fermi gas in the 
IMF, H sech2(ay) where a is the inhomogeneity parameter. In § 2, the expression for 
the magnetic moment of the degenerate electron gas is given. In E3 3 we present the 
numerical results of our calculations which show the paramagnetic to diamagnetic 
transition as well as a possibility of spontaneous magnetisation of the electron gas. 

2. Magnetic moment of an electron gas 

2.1. Energy eigenvalues 

The inhomogeneous magnetic field 

Hx = H ,  =0 ,  H,(y) = H sech2(ay) (1) 

A, (y )  = - ( H / a )  tanh(ay1, A ,  = A ,  = O .  (2) 

is derived from the vector potential 

In the above, H is the field strength at y = 0. With the vector potential defined in 
( 2 ) ,  the two-component Dirac equation for an electron can be solved exactly (Stanciu 
1967). The eigenfunctions are obtained in terms of the Jacobi polynomials and the 
energy eigenvalues are given by 

EN = mc ’{ 1 + ( p,/mc)’ + ( px/mc)’ + 2N (H/Hc)  

- (aAcN)’-(px/mc)’[l - ( U A ~ ) ~ N / ( H / H ~ ) ] - * } ~ ” ,  (3) 

where p x  and p z  are the electron momenta along the x and z directions, respectively. 
The quantum number N is defined by 

N = n + $ s + i ,  (4) 

H, = m 2 c 3 / e h  = 4.414 x 1 0 1 3 ~  ( 5 )  

is the Landau critical magnetic field beyond which quantum electrodynamics is sup- 
posed to break down (Landau and Lifshitz 1975) and & = h/mc is the electron 
Compton wavelength divided by 2 7 .  In order that bound state solutions exist for the 
Dirac equation in the field ( l ) ,  the quantum number N must satisfy the inequality 

where n = 0 , 1 , 2 , .  . . and s = +1 (-1) for the state with spin up (down). Further, 

N W/H,)/(a&)’- l (~~ /mc) / (a&)~ / ” ’ .  (6) 

Note that when the inhomogeneity parameter a is set to zero the magnetic field (1) 
becomes homogeneous, the restriction on the quantum number N is removed and 
also the energy eigenvalue (3) reduces to 

(7 1 EN = mc2[1 +(pL/mc)’+2N(H/H,)I1”  

which is the energy of a Dirac electron in a homogeneous magnetic field (Johnson 
and Lippmann 1949). 

We would like to make a few observations before proceeding further. 
(i) The appearance of the product term involving the quantum number N and the 

continuous variable p x  in (3) should not be surprising. A similar feature is seen in 
the case of the motion of an electron in the presence of crossed homogeneous magnetic 
and electric fields (Canuto and Chiuderi 1969). The explicit appearance of p x  is due 
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to the drift motion of the electron (in the classical picture) along the direction 
perpendicular to both the field strength and the gradient of the field (Jackson 1975). 

(ii) Although the inhomogeneity parameter a can be arbitrary, physical consider- 
ations impose certain limitations on the range of values of a. We know that sech2(ay) 
is a rapidly decreasing function of ay. For instance, when ay = 0, sech2(ay) = 1 and 
when ay = 20, sech2(ay) - lo-”. Therefore, for H of the order of H,, H,(y) becomes 
of the order of when a y  = 20. If we choose large values of a, the field strength 
becomes vanishingly small even for small values of y. We choose two particular values 
of a, one for the neutron star dimensions (-10 km) and another for the laboratory 
dimensions (-1 m) such that the field strength, H,(y) is appreciable over the whole 
region under consideration. The field does not vanish, even though it decreases with 
ay, and hence the question of matching at the boundaries does not arise. 

(iii) The above constraint on the parameter a and also its appearance along with 
A, in the energy expression (3) make the effect of the inhomogeneity in the energy 
to be practically zero. However, we shall see later that the space dependence of the 
magnetic moment Jensity that arises due to the inhomogeneous nature of the field 
makes a considerable difference from the case of homogeneous magnetic fields. In 
another IMF under study, namely 

H, ( r )  = b / r a ,  

this problem of the insensitivity of the energy and hence the thermodynamic quantities 
due to changes in the inhomogeneity does not arise. The results of our investigation 
in this IMF will be presented elsewhere. 

2.2. Definition of the magnetic moment 

The magnetic moment M of an electron gas of volume V in the presence of a HMF 
is defined through the relation 

a= -M * H ,  (8) 

where 0 is the thermodynamic potential. In the particular case when the magnetic 
field is along the z direction we can write 

M, = -dfl/aHz. (9) 

The above definition for the magnetic moment cannot as such be carried over to the 
inhomogeneous case. For an arbitrary IMF along the z direction, Hz(x,  y, z ) ,  the 
thermodynamic potential can be written as 

where 

a ( x ,  y, z )  = - I z ( x ,  Y ,  z ) H z ( x ,  y, 2 )  (1 1) 

is the thermodynamic potential density. In (ll), I z ( x ,  y, z )  is the magnetic moment 
density and it is given by 

(12) I z ( x ,  Y, 2 )  = -dc+(x, Y, z ) laH , (x ,  y, 2 )  

in analogy with (9). 
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The total magnetic moment M = M, of the gas is obviously 

M = I z (x ,  y ,  z )  dV. I, 
In the case of the HMF, where I ,  is independent of the coordinates, (10) simplifies to 

n = - H  I,  d V = - H I , V  I, 
with the total magnetic moment M, identified by 

M = I,V, (15) 

as is to be expected. 

2.3. Thermodynamic potential 

The thermodynamic potential n of a Fermi gas is given by (Landau and Lifshitz 1959) 

n = - k T ~ l o g [ l + e x p p ( ~  - E ~ ) ] .  (16) 

Here p = mc2/kT,  with k the Boltzmann constant and T the absolute temperature. 
Further, is the chemical potential plus electron rest energy and .ej is the energy of 
the electron in the jth quantum state, both expressed in units of mc2.  The summation 
in (16) indicates summation over the discrete quantum numbers n and s and integration 
over the momentum variables. 

i 

The contribution to the summation from the continuous variable p z  is 
v 1 / 3  +m 

2.rrA I, dpz. 

‘Qhe summand in (16) includes the density of state factor wN which brings in its wake 
integrals over p x  and p y  during its computation. In the case of the HMF these integrals 
can be performed straightaway. But because of the presence of p x  in the integrand 
the p x  integral cannot be performed and we have to have recourse to an operator 
definition of wN as given below in equation (18). The definition is justified by the 
recovery of the corresponding expression for the homogeneous case. 

We compute wN in the usual way (Huang 1963). In the absence of the magnetic 
field the momenta p x  and py form a continuous distribution. When the field is turned 
on, the energies of the states are changed by finite amounts and a certain number of 
states coalesce to form the Landau levels. In particular, for the IMF under consider- 
ation, by comparing the energy spectrum of a free electron with equation (3) we find 
that in the two-dimensional space spanned by p x  and p y  the energy surfaces are ellipses 
given by 

772/[6(N)12+52/[g(N)12 = 1, (17) 

77 =Pr/mC, 5 = P y / W  

6 ~ )  = [ I -  ( ~ X ~ ) ~ N ( H / H , ) I ~ ( N ) ,  

where 

g ( N )  = [2NH/Hc-  (aXcN)2]1 /2 .  
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In the case of the HMF equation (17) reduces to the equation of a circle: q 2 + 1 2 =  
2NH/Hc. 

The factor wN is obtained by considering the 'area' of the phase space (x ,  y, q, l )  
corresponding to the moments q and 5 lying between two ellipses N and N + 1 and 
dividing by the unit of area (27rAJ': 

b ( N + l )  b(N) 

ON =- dx dy( / -b(N+l)  -b(N)  

1 
c ( N + 1 ) d g -  J c(N)dq) ,  (18) 

where 

c (NI = {[g(N)I2 - 77 - (a Ac)2N/(H/Hc)1211/2. 

With this expression for the density of states and explicitly writing out the summation 
over the quantum number n, we get for the thermodynamic potential density the 
following expression: 

where 6 =pz/mc. In writing equation (19) the spin summation has been performed 
by noting the two-fold spin degeneracy of the eigenvalues, except for the state N = 0. 
It can be easily seen that in the limit a -* 0, ON reduces to the usual degeneracy factor 
of the homogeneous case (Canuto er a1 1969). 

The constraint on the quantum number N in (6) can be rewritten so as to give an 
upper limit for 77 : 

1771 (H/Hc)[1 - (a~c)2N/(H/Hc)12/(aAc)2. (20) 

This, when taken together with the limits of the q integration, leads to the condition 

H / H c 2  (aAc)2N(2+J2).  (21) 

2.4. The degenerate electron gas 

We are at first interested in calculating the magnetic moment of only the degenerate 
electron gas. The electron gas becomes degenerate when 

Under this condition the expression log[l +exp p ( p  -EN)] appearing in equation (19) 
is replaced by (p  - e N ) P ;  also the integration over 6 becomes finite with limits - d ( N )  
and d ( N )  where 

d ( N )  ={p2- 1 -q2[1 -(1 -(a2ic)2N/(H/Hc))-21-[2N(H/Hc)-(aXcN) 2 I} 1/2 . (23) 
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Incorporating this into the expression for cr, we get in the degeneracy limit 

h t h  + I 1  ! > ( V I  

+ f (J  c ( N + l ) d V - I  - b i W  c ( N ) d v j  J d ‘ ”  d ( %  (p- t - \ jd [ / .  124) 

It is to be noted that the summation over N terminates after some K which is the 
maximum value of N for which the radicand in (23) is positive. 

To avoid singularities that would arise at the limits of the integrations, when 
the expression for cr is differentiated with respect to H to obtain the magnetic moment 
density, we transform the variable limits occurring in (24) into constant ones from -I 
to +1 using the transformation (Davis and Rabinowitz 1975) 

N - l  - b ( N t l i  

8, = ( U ,  l+L , - , ) / 2+(U, - l -L ,  I)t,/2. (251 

Here 81 = q and O2 = 6, t ,  are the new variables and U, 
lower limits of the 8, integrations; the Jacobian of the transformation is 

and L ,  are the upper and 

J =  CUI 1-L, 1)/2. 26 I 
i = 1 2  

Hence we have 

In the above equations 

177g I 

t 2 7 h )  

2.5. Expression for the magnetic moment 

We can now obtain the magnetic moment density I ,  as given by (121: 

I z ( y  i = -acr/aH,(y). (28) 

Since the energy .sN and hence cr involve Hz(y) only through the parameters H and 
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a, we should vary cr only with respect to these latter quantities. Notice that cr does 
not depend on y, unlike H, which is a function of y also, leading to the magnetic 
moment density I ,  being a function of y. We prefer to fix the value of a and vary cr 
with respect to H only. Then we have 

I ,  (y ) = -aU/aH, (y ) = -(ac+/aH)(aH/aH, (Y 1). 

I ,  ( y )  = - ( a ~ / a H )  cosh2(ay). 

(29) 

From (1) we have dH/aH(y) = cosh2(ay). Therefore 

(30) 

The quantity aa/aH is obtained from equations (27), 27(a)-  ( h )  by differentiation 
with respect to H :  

where (aa/dH) is given by (31). When the integration is performed over a spherical 
region of radius r, over which the gas extends, we get 

2 cosh(2ar) sinh(2ar) + (33) 

In the limit a + 0 the quantities inside the second parentheses reduce to 4 as should 
be expected, when the field is homogeneous. It may be remarked that the appearance 
of the function cosh2(ay) in the expression for the magnetic moment density in equation 
(30) does not lead to an unbounded increase of the magnetic moment. Though 
cosh2(ay) increases with y, it remains finite for systems of interest. The dimensions 
of the systems over which the electron gas extends set a limit on the maximum value 
of the magnetic moment density and the total magnetic moment. 

3. Numerical results and conclusion 

We have computed the magnetic moment density I ,  (y ) for various values of the field 
strength and the chemical potential p. The results show that except for the space 
dependent factor cosh2(ay), the magnetic moment density is almost the same as the 
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magnetisation in the homogeneous case. In table 1 we give the value of I , ( y )  for a 
set of values of p when ay = 5.0 and H/H,  = 0.1. It is observed that when H/H,  = 1 
and 0.5, for the range of values of p :  1.1 to 2.7, there is no transition to diamagnetism. 
In these cases the maximum value of N at which the summation in (31) terminated 
due to the degeneracy condition (22) is just 7. But for H/H,  = 0.1, from the table it 
can be seen that as higher quantum levels get filled up, the transition is more prevalent. 

Table 1. A set of values of the chemical potential (in units of mc2)  and the corresponding 
values of the magnetisation (homogeneous case) and magnetic moment density 
(inhomogeneous case at ay = 5.0) (both in units of p , ~ / A z )  are listed for H/H,= 0.1. Here 
N = K is the quantum number at which the summation terminates (cf equation (3 1)). 

Magnetic moment density I 
Chemical 
potential Homogeneous Inhomogeneous 
CI case x 1 0 - ~  case N = K  

1.1 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5 . 5  
6.0 
6.5 
7.0 
7.5 

0.310 
-0.072 

4.41 
-0.812 

7.52 
-1.62 
10.2 
- 1.93 
13.6 
-2.12 
16.0 
-3.09 
17.6 
-5.15 

1.71 
-0.397 
24.6 
-4.48 
41.4 
-8.91 
56.1 

-10.6 
74.8 

-11.6 
88.0 

-16.2 
96.8 

-28.3 

2 
7 

15 
27 
40 
57 
75 
9 1  

120 
147 
175 
207 
240 
277 

The magnetic induction B ( y )  is related to the impressed magnetic field H ( y )  and 

(34) 

where p ’  is the permeability of the medium. In order that spontaneous magnetisation 
occurs, the induced magnetic field B ( y )  must be greater than the impressed field, or 
equivalently I ( y )  > H ( y ) .  For the particular magnetic field under consideration this 
is in fact the case. For example, when a = 5 x cm-’, H/H,  = 1 and p = 2.0, the 
magnetic moment density at the point y = lo6 cm is 

the magnetic moment density I ( y )  by the relation 

B(Y) = P ’ [ H ( Y )  +I(Y 11, 

I ( y  = lo6 cm) = 4.435 x 1O2(pB/X;)G = 7.144 x 1013 G.  

At this point the magnetic field strength is 

H ( y  = lo6 cm) = H ,  sech2(5.0)G = 8.01 1 X lo9 G. 

Thus the magnetic moment density is greater than the inducing magnetic field by a 
factor of lo4. Following the argument of Canuto and Chiu (1968c), we may conclude 
that an electron gas in this inhomogeneous magnetic fie1.d exhibits spontaneous 
magnetisation. 
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To the best of our knowledge there does not exist any alternative method in the 
literature for the study of the magnetic behaviour of an electron gas in any IMFS. We 
believe that our approach in the present paper can be usefully applied to study similar 
problems in other inhomogeneous magnetic fields and also in combined electric and 
magnetic fields. 
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